Skip to main content

Publications

Carlson C.H., Choi Y., Chan A.P., Serapiglia M.J., Town C.D., Smart L.B. 2017. Dominance and sexual dimorphism pervade the Salix purpurea L. transcriptome. Genome Biology and Evolution, evx174, https://doi.org/10.1093/gbe/evx174

Fabio E.S., Volk T.A., Miller R.O., Serapiglia M.J., Kemanian A.R., Montes F., Kuzovkina Y.A., Kling G.J., Smart L.B. 2017. Contributions of environment and genotype to variation in shrub willow biomass composition. Industrial Crops and Products, 108: 149-161. http://www.sciencedirect.com/science/article/pii/S0926669017304168

Fabio E.S., Kemanian A.R., Montes F., Miller R.O., Smart L.B. 2016. A mixed model approach for evaluating yield improvements in interspecific hybrids of shrub willow, a dedicated bioenergy crop. Industrial Crops and Products, 96: 57-70. http://www.sciencedirect.com/science/article/pii/S0926669016307634

Carlson C.H., Smart L.B. 2016. Electrical capacitance as a predictor of root dry weight in shrub willow (Salix; Salicaceae) parents and progeny. Applications in Plant Sciences, 4(8):1600031 http://www.bioone.org/doi/10.3732/apps.1600031

Fabio E.S., Volk T.A., Miller R.O., Serapiglia M.J., Gauch H.G., Van Rees K.C.J., Hangs R.D., Amichev B.Y., Kuzovkina Y.A., Labrecque M., Johnson G.A., Ewy R.G., Kling G.J., Smart L.B. 2016. Genotype by environment interactions analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids. GCB Bioenergy, 9: 445-459. http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12344/full

Serapiglia M.J., Gouker F.E., Hart J.F., Unda F. Mansfield S.D., Stipanovic A.J., Smart L.B. 2014. Ploidy-level affects important biomass traits of novel shrub willow (Salix) hybrids. BioEnergy Research, 8: 259-269. http://link.springer.com/article/10.1007/s12155-014-9521-x#/page-1

Kenaley S.C., Smart L.B., Hudler G.W. 2014. Genetic evidence for three discrete taxa of Melampsora (Pucciniales) affecting willows (Salix spp.) in New York State. Fungal Biology, 118: 704-720. http://www.sciencedirect.com/science/article/pii/S1878614614000695

Serapiglia M.J., Gouker F.E., Smart L.B. 2014. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biology, 14: 74. http://www.biomedcentral.com/1471-2229/14/74

Serapiglia M.J., Cameron K.D., Stipanovic A.J., Abrahamson L.P., Volk T.A., Smart L.B. 2013. Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. BioEnergy Research, 6: 533-546. http://link.springer.com/article/10.1007%2Fs12155-012-9272-5

Serapiglia M.J., Humiston M.C., Xu H., Hogsett D.A., Mira de Orduña R., Stipanovic A.J., Smart L.B. 2013. Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production. Frontiers in Plant Science, 4: 1-8. http://www.frontiersin.org/Plant_Biotechnology/10.3389/fpls.2013.00057/full

Serapiglia M.J., Cameron K.D., Stipanovic A.J., Smart L.B. 2012. Correlations of expression of cell wall biosynthesis genes with variation in biomass composition in shrub willow (Salix spp.) biomass crops. Tree Genetics and Genomes, 8: 775-788. http://www.springerlink.com/content/n8k786q602210723/

Smart L.B. and Cameron K.D. 2012. Shrub willow. In Kole C., Joshi C.P., Shonnard D.R. (eds.) Handbook of Bioenergy Crop Plants, Taylor and Francis Group, Boca Raton, FL. pp. 687-708. http://www.crcpress.com/product/isbn/9781439816844

Lee S.J., Warnick T.A., Pattathil S., Alvelo-Maurosa J.G., Serapiglia M.J., McCormick H., Brown V., Young N.F., Schnell D.J., Smart L.B., Hahn M.G., Pedersen J.F., Leschine S.B., Hazen S.P. 2012. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnology for Biofuels, 5: 1-14. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348094/?tool=pubmed

Puckett E.E., Serapiglia M.J., DeLeon A.M., Long S., Minocha R., Smart L.B. 2012. Differential expression of genes encoding phosphate transporters contributes to arsenic tolerance and accumulation in shrub willow (Salix spp.). Environmental and Experimental Botany, 75: 248-257. http://www.sciencedirect.com/science/article/pii/S0098847211001717

Volk T.A., Abrahamson L.P., Cameron K.D., Castellano P., Corbin T., Fabio E.S., Johnson G., Kuzovkina-Eischen Y., Labrecque M., Miller R., Sidders D., Smart L.B., Staver K., Stanosz G.R., Van Rees K. 2011. Yields of biomass crops across a range of sites in North America. Aspects of Applied Biology, 112: 67-74. http://agroenergie.ca/pdf/Produits_%20services/VOLK_Yield_trials_North_America-AspApplBio.pdf

Gibbs J.P., Smart L.B., Newhouse A.E., Leopold D.J. 2011. A molecular and fitness evaluation of commercially available versus locally collected blue lupine Lupinus perennis L. seeds for use in ecosystem restoration efforts. Restoration Ecology, 20: 456-461. http://onlinelibrary.wiley.com/doi/10.1111/j.1526-100X.2011.00809.x/full

Lin, J. Gibbs, J.P. Smart, L.B. 2009. Population genetic structure of native versus naturalized sympatric shrub willows. American Journal of Botany, 96: 771–785. http://www.amjbot.org/cgi/content/abstract/96/4/771

Serapiglia M.J., Cameron K.D., Stipanovic A.J., Smart L.B. 2009. Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content for the selection of shrub willow bioenergy crop varieties. BioEnergy Research, 2:1-9. http://www.springerlink.com/content/53p28p1223w06917/

Purdy J.J., Smart L.B. 2008. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. International Journal of Phytoremediation, 10: 515-528. http://www.tandfonline.com/doi/abs/10.1080/15226510802115000

Teece M.A., Zengeya T., Volk T.A., Smart L.B. 2008. Cuticular wax composition of Salix varieties in relation to biomass productivity. Phytochemistry, 69: 396-402. http://www.ncbi.nlm.nih.gov/pubmed/17900636

Cameron K.D., Phillips I.J., Kopp R.F., Volk T.A., Maynard C.A., Abrahamson L.P., Smart L.B. 2008. Quantitative genetics of traits indicative of biomass production and heterosis in 34 full-sib F1 Salix eriocephala families. BioEnergy Research, 1: 80-90. http://www.springerlink.com/content/6716507562577108/

Serapiglia M.J., Cameron K.D., Stipanovic A.J., Smart L.B. 2008. High-resolution thermogravimetric analysis for rapid characterization of biomass composition and selection of shrub willow varieties. Applied Biochemistry and Biotechnology, 145: 3-11. http://www.springerlink.com/content/t881055g214785g8/

Smart L.B., Cameron K.D. 2008. Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop. In Vermerris, W. E. (ed.) Genetic Improvement of Bioenergy Crops, Springer Science, NY, 347-376. http://www.springerlink.com/content/w13116k7651u3252/

Kuzovkina Y.A., Weih M., Romero M.A., Charles J., Hurst S., McIvor I., Karp A., Trybush S., Labrecque M., Teodorescu T.I., Singh N.B., Smart L.B., Volk T.A. 2008. Salix: Botany and Global Horticulture. Horticultural Reviews, Vol. 34, J. Janick (ed.), John Wiley & Sons, Inc., Hoboken, NJ, pp. 447-489.

Smart L.B., Cameron K.D., Volk T.A., Abrahamson L.P. 2008. Breeding, selection, and testing of shrub willow as a dedicated energy crop. NABC Report 19 Agricultural Biofuels: Technology, Sustainability, and Profitability, National Agricultural Biotechnology Council, Ithaca, NY, pp. 85-92. http://nabc.cals.cornell.edu/pubs/nabc_19/NABC19_5Plenary2_Smart.pdf

Lin J., Gunter L.E., Harding S., Kopp R.F., McCord R.P., Tsai C.J., Tuskan G.A., Smart L.B. 2007. Development of AFLP and RAPD markers linked to a locus associated with twisted growth in corkscrew willow (Salix matsudana ‘Tortuosa’). Tree Physiology, 27: 1575-83. http://treephys.oxfordjournals.org/cgi/reprint/27/11/1575.pdf

Volk T.A., Abrahamson L.P., Nowak C.A., Smart L.B., Tharakan P.J., White E.H. 2006. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass & Bioenergy, 30: 715-727.

Cameron K.D., Teece M.A., Smart L.B. 2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiology, 140: 176-183. http://www.plantphysiol.org/cgi/content/short/140/1/176

Cameron K.D., Moskal W.A., Smart L.B. 2006. A second member of the Nicotiana glauca lipid transfer protein gene family, NgLTP2, encodes a divergent and differentially expressed protein. Functional Plant Biology, 33: 141-152. http://cat.inist.fr/?aModele=afficheN&cpsidt=17539630

Smart L.B., Volk T.A., Lin J., Kopp R.F., Phillips I.S., Cameron K.D., White E.H., Abrahamson L.P. 2005. Genetic improvement of shrub willow (Salix spp.) crops for bioenergy and environmental applications in the United States. Unasylva, 56: 51-55.

Plant Patents with co-inventors, L.P. Abrahamson, R.F. Kopp, T.A. Volk:
Fast-growing willow shrub named ‘Otisco’.  U.S. PP 17,997 issued Sept. 11, 2007.
Fast-growing willow shrub named ‘Tully Champion’. U.S. PP 17,946 issued Aug. 28, 2007.
Fast-growing willow shrub named ‘Owasco’. U.S. PP 17,845 issued July 3, 2007.
Fast-growing willow shrub named ‘Canastota’.  U.S. PP 17,724 issued May 15, 2007.
Fast-growing willow shrub named ‘Fish Creek’.  U.S. PP 17,710 issued May 8, 2007.
Fast-growing willow shrub named ‘Oneida’. U.S. PP 17,682 issued May 1, 2007.
Fast-growing willow shrub named ‘Millbrook’. U.S. PP 17,646 issued April 24, 2007.

Skip to toolbar